{ "id": "2105.11384", "version": "v1", "published": "2021-05-24T16:21:56.000Z", "updated": "2021-05-24T16:21:56.000Z", "title": "The singularity probability of a random symmetric matrix is exponentially small", "authors": [ "Marcelo Campos", "Matthew Jenssen", "Marcus Michelen", "Julian Sahasrabudhe" ], "comment": "48 pages", "categories": [ "math.PR", "math.CO" ], "abstract": "Let $A$ be drawn uniformly at random from the set of all $n\\times n$ symmetric matrices with entries in $\\{-1,1\\}$. We show that \\[ \\mathbb{P}( \\det(A) = 0 ) \\leq e^{-cn},\\] where $c>0$ is an absolute constant, thereby resolving a well-known conjecture.", "revisions": [ { "version": "v1", "updated": "2021-05-24T16:21:56.000Z" } ], "analyses": { "keywords": [ "random symmetric matrix", "singularity probability", "exponentially small", "absolute constant" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }