{ "id": "2105.11379", "version": "v1", "published": "2021-05-24T16:16:40.000Z", "updated": "2021-05-24T16:16:40.000Z", "title": "New multiplicity results for critical $p$-Laplacian problems", "authors": [ "Carlo Mercuri", "Kanishka Perera" ], "categories": [ "math.AP" ], "abstract": "We prove new multiplicity results for the Brezis-Nirenberg problem for the $p$-Laplacian. Our proofs are based on a new abstract critical point theorem involving the ${\\mathbb Z}_2$-cohomological index that requires less compactness than the (PS) condition. Some of our results are new even in the semilinear case $p = 2$.", "revisions": [ { "version": "v1", "updated": "2021-05-24T16:16:40.000Z" } ], "analyses": { "subjects": [ "35J92", "35B33", "58E05" ], "keywords": [ "multiplicity results", "laplacian problems", "abstract critical point theorem", "brezis-nirenberg problem", "semilinear case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }