{ "id": "2105.10971", "version": "v1", "published": "2021-05-23T16:43:49.000Z", "updated": "2021-05-23T16:43:49.000Z", "title": "Independent sets in subgraphs of a shift graph", "authors": [ "Andrii Arman", "Vojtěch Rödl", "Marcelo Tadeu Sales" ], "comment": "10 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "Erd\\\"{o}s, Hajnal and Szemer\\'{e}di proved that any subset $G$ of vertices of a shift graph $\\text{Sh}_{n}^{k}$ has the property that the independence number of the subgraph induced by $G$ satisfies $\\alpha(\\text{Sh}_{n}^{k}[G])\\geq \\left(\\frac{1}{2}-\\varepsilon\\right)|G|$, where $\\varepsilon\\to 0$ as $k\\to \\infty$. In this note we show that for $k=2$ and $n \\to \\infty$ there are graphs $G\\subseteq \\binom{[n]}{2}$ with $\\alpha(\\text{Sh}_{n}^{k}[G])\\leq \\left(\\frac{1}{4}+o(1)\\right)|G|$, and $\\frac{1}{4}$ is best possible. We also consider a related problem for infinite shift graphs.", "revisions": [ { "version": "v1", "updated": "2021-05-23T16:43:49.000Z" } ], "analyses": { "subjects": [ "05C69" ], "keywords": [ "independent sets", "infinite shift graphs", "independence number", "related problem" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }