{ "id": "2105.10667", "version": "v1", "published": "2021-05-22T09:01:55.000Z", "updated": "2021-05-22T09:01:55.000Z", "title": "Parameterized viscosity solutions of convex Hamiltonian systems with time periodic damping", "authors": [ "Ya-Nan Wang", "Jun Yan", "Jianlu Zhang" ], "comment": "40pages,3 figures", "categories": [ "math.DS", "math.AP" ], "abstract": "In this article we develop an analogue of Aubry Mather theory for time periodic dissipative equation \\[ \\left\\{ \\begin{aligned} \\dot x&=\\partial_p H(x,p,t),\\\\ \\dot p&=-\\partial_x H(x,p,t)-f(t)p \\end{aligned} \\right. \\] with $(x,p,t)\\in T^*M\\times\\mathbb T$ (compact manifold $M$ without boundary). We discuss the asymptotic behaviors of viscosity solutions of associated Hamilton-Jacobi equation \\[ \\partial_t u+f(t)u+H(x,\\partial_x u,t)=0,\\quad(x,t)\\in M\\times\\mathbb T \\] w.r.t. certain parameters, and analyze the meanings in controlling the global dynamics. We also discuss the prospect of applying our conclusions to many physical models.", "revisions": [ { "version": "v1", "updated": "2021-05-22T09:01:55.000Z" } ], "analyses": { "subjects": [ "35B40", "37J50", "37J55", "49L25" ], "keywords": [ "convex hamiltonian systems", "parameterized viscosity solutions", "time periodic damping", "aubry mather theory", "time periodic dissipative equation" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }