{ "id": "2105.10579", "version": "v1", "published": "2021-05-21T21:22:22.000Z", "updated": "2021-05-21T21:22:22.000Z", "title": "An algebraic interpretation of the intertwining operators associated with the discrete Fourier transform", "authors": [ "Mesuma Atakishiyeva", "Natig Atakishiyev", "Alexei Zhedanov" ], "comment": "8 pages, 21 references", "categories": [ "math-ph", "math.MP" ], "abstract": "We show that intertwining operators for the discrete Fourier transform form a cubic algebra $\\mathcal{C}_q$ with $q$ a root of unity. This algebra is intimately related to the two other well-known realizations of the cubic algebra: the Askey-Wilson algebra and the Askey-Wilson-Heun algebra.", "revisions": [ { "version": "v1", "updated": "2021-05-21T21:22:22.000Z" } ], "analyses": { "subjects": [ "42A38" ], "keywords": [ "intertwining operators", "algebraic interpretation", "discrete fourier transform form", "cubic algebra", "askey-wilson-heun algebra" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }