{ "id": "2105.10363", "version": "v1", "published": "2021-05-21T14:00:36.000Z", "updated": "2021-05-21T14:00:36.000Z", "title": "Classification of Positive Radial Solutions to A Weighted Biharmonic Equation", "authors": [ "Yuhao Yan" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we consider the weighted fourth order equation $$\\Delta(|x|^{-\\alpha}\\Delta u)+\\lambda \\text{div}(|x|^{-\\alpha-2}\\nabla u)+\\mu|x|^{-\\alpha-4}u=|x|^\\beta u^p\\quad \\text{in} \\quad \\mathbb{R}^n \\backslash \\{0\\},$$ where $n\\geq 5$, $-n<\\alpha1$ and $(p,\\alpha,\\beta,n)$ belongs to the critical hyperbola $$\\frac{n+\\alpha}{2}+\\frac{n+\\beta}{p+1}=n-2.$$ We prove the existence of radial solutions to the equation for some $\\lambda$ and $\\mu$. On the other hand, let $v(t):=|x|^{\\frac{n-4-\\alpha}{2}}u(|x|)$, $t=-\\ln |x|$, then for the radial solution $u$ with non-removable singularity at origin, $v(t)$ is a periodic function if $\\alpha \\in (-2,n-4)$ and $\\lambda$, $\\mu$ satisfy some conditions; while for $\\alpha \\in (-n,-2]$, there exists a radial solution with non-removable singularity and the corresponding function $v(t)$ is not periodic. We also get some results about the best constant and symmetry breaking, which is closely related to the Caffarelli-Kohn-Nirenberg type inequality.", "revisions": [ { "version": "v1", "updated": "2021-05-21T14:00:36.000Z" } ], "analyses": { "subjects": [ "35B07", "35B09", "35B10", "35J30", "35J75" ], "keywords": [ "weighted biharmonic equation", "positive radial solutions", "classification", "weighted fourth order equation", "non-removable singularity" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }