{ "id": "2105.09715", "version": "v1", "published": "2021-05-20T13:03:38.000Z", "updated": "2021-05-20T13:03:38.000Z", "title": "Development of inequality and characterization of equality conditions for the numerical radius", "authors": [ "Pintu Bhunia", "Kallol Paul" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "Let $A$ be a bounded linear operator on a complex Hilbert space and $\\Re(A)$ ( $\\Im(A)$ ) denote the real part (imaginary part) of A. Among other refinements of the lower bounds for the numerical radius of $A$, we prove that \\begin{eqnarray*} w(A)&\\geq &\\frac{1}{2} \\left \\|A \\right\\| + \\frac{ 1}{2} \\mid \\|\\Re(A)\\|-\\|\\Im(A)\\|\\mid,\\,\\,\\mbox{and}\\\\ w^2(A)&\\geq& \\frac{1}{4} \\left \\|A^*A+AA^* \\right\\| + \\frac{1}{2}\\mid \\|\\Re(A)\\|^2-\\|\\Im(A)\\|^2 \\mid, \\end{eqnarray*} where $w(A)$ is the numerical radius of the operator $A$. We study the equality conditions for $w(A)=\\frac{1}{2}\\sqrt{\\|A^*A+AA^*\\|}$ and prove that $w(A)=\\frac{1}{2}\\sqrt{\\|A^*A+AA^*\\|} $ if and only if the numerical range of $A$ is a circular disk with center at the origin and radius $\\frac{1}{2}\\sqrt{\\|A^*A+AA^*\\|} $. We also obtain upper bounds for the numerical radius of commutators of operators which improve on the existing ones.", "revisions": [ { "version": "v1", "updated": "2021-05-20T13:03:38.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30", "15A60" ], "keywords": [ "numerical radius", "equality conditions", "development", "characterization", "inequality" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }