{ "id": "2105.09184", "version": "v1", "published": "2021-05-19T15:02:07.000Z", "updated": "2021-05-19T15:02:07.000Z", "title": "Equigeodesics on some classes of homogeneous spaces", "authors": [ "Marina Statha" ], "comment": "16 pages", "categories": [ "math.DG" ], "abstract": "We study homogeneous curves on some classes of reductive homogeneous spaces G=H which are geodesics with respect to any G-invariant metric on G=H. These curves are called equigeodesics. The spaces we consider are certain Stiefel manifolds VkRn, generalized Wallach spaces and spheres. We give a characterization for algebraic equigeodesics on V2Rn, V4R6, SO(6)= SO(3) ? SO(2), W6 = U(3)= U(1)3, W12 = Sp(3)= Sp(1)3, S2n+1 ?= U(n + 1)= U(n) and S4n+3 ?= Sp(n + 1)= Sp(n).", "revisions": [ { "version": "v1", "updated": "2021-05-19T15:02:07.000Z" } ], "analyses": { "subjects": [ "53C25", "53C30" ], "keywords": [ "homogeneous spaces", "stiefel manifolds vkrn", "study homogeneous curves", "algebraic equigeodesics", "generalized wallach spaces" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }