{ "id": "2105.07707", "version": "v2", "published": "2021-05-17T09:51:55.000Z", "updated": "2022-12-15T09:41:05.000Z", "title": "B-splines on the Heisenberg group", "authors": [ "Santi R. Das", "Peter R. Massopust", "Radha Ramakrishnan" ], "categories": [ "math.FA" ], "abstract": "In this paper, we introduce a class of $B$-splines on the Heisenberg group $\\mathbb{H}$ and study their fundamental properties. Unlike the classical case, we prove that there does not exist any sequence $\\{\\alpha_n\\}_{n\\in\\mathbb{N}}$ such that $L_{(-n.-\\frac{n}{2},-\\alpha_n)}\\phi_n(x,y,t)=L_{(-n.-\\frac{n}{2},-\\alpha_n)}\\phi_n(-x,-y,-t)$, for $n\\geq 2$, where $L_{(x,y,t)}$ denotes the left translation on $\\mathbb{H}$. We further investigate the problem of finding an equivalent condition for the system of left translates to form a frame sequence or a Riesz sequence in terms of twisted translates. We also find a sufficient condition for obtaining an oblique dual of the system $\\{L_{(2k,l,m)}g:k,l,m\\in\\mathbb{Z}\\}$ for a certain class of functions $g\\in L^2(\\mathbb{H})$. These concepts are illustrated by some examples. Finally, we make some remarks about $B$-splines regarding these results.", "revisions": [ { "version": "v2", "updated": "2022-12-15T09:41:05.000Z" } ], "analyses": { "subjects": [ "42C15", "41A15", "43A30" ], "keywords": [ "heisenberg group", "sufficient condition", "riesz sequence", "fundamental properties", "frame sequence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }