{ "id": "2105.06190", "version": "v2", "published": "2021-05-13T11:04:40.000Z", "updated": "2021-06-09T16:22:12.000Z", "title": "{On terms in a dynamical divisibility sequence having a fixed G.C.D with their index", "authors": [ "Abhishek Jha" ], "comment": "13 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $F(x)$ be an integer coefficient polynomial with degree at least $2.$ Define the sequence $a_n$ by $a_n=F(a_{n-1})$ for all $n\\ge 1$ and $a_0=0.$ Let $\\mathscr{B}_{F,G,k}$ be the set of all positive integers $n$ such that $k\\mid \\gcd(G(n),a_n)$ and if $p\\mid \\gcd(G(n),a_n)$ for some $p$, then $p\\mid k.$ And $\\mathscr{A}_{F,G,k}$ be the subset of $\\mathscr{B}_{F,G,k}$ such that $\\mathscr{A}_{F,G,k}=\\{n>0 : \\gcd(G(n),a_n)=k\\}.$ In this article, we explain the asymptotic density of $\\mathscr{A}_{F,G,k}$ and $\\mathscr{B}_{F,G,k}$ for a class of $(F,G)$ and also compute the explicit density of $\\mathscr{A}_{F,G,k}$ and $\\mathscr{B}_{F,G,k}$ for $G(x)=x.$", "revisions": [ { "version": "v2", "updated": "2021-06-09T16:22:12.000Z" } ], "analyses": { "subjects": [ "11C08", "11B05", "11A05" ], "keywords": [ "dynamical divisibility sequence", "integer coefficient polynomial", "explicit density", "asymptotic density", "positive integers" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }