{ "id": "2105.03794", "version": "v1", "published": "2021-05-08T22:46:10.000Z", "updated": "2021-05-08T22:46:10.000Z", "title": "On the coefficients in an asymptotic expansion of $(1+1/x)^x$", "authors": [ "T. M. Dunster", "Jessica M. Perez" ], "categories": [ "math.CA" ], "abstract": "The function $g(x)= (1+1/x)^{x}$ has the well-known limit $e$ as $x\\rightarrow{\\infty}$. The coefficients $c_{j}$ in an asymptotic expansion for $g(x)$ are considered. A simple recursion formula is derived, and then using Cauchy's integral formula the coefficients are approximated for large $j$. From this it is shown that $|c_{j}|\\rightarrow{1}$ as $j\\rightarrow{\\infty}$.", "revisions": [ { "version": "v1", "updated": "2021-05-08T22:46:10.000Z" } ], "analyses": { "subjects": [ "41A58", "30E15", "30E20" ], "keywords": [ "asymptotic expansion", "coefficients", "cauchys integral formula", "simple recursion formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }