{ "id": "2105.03717", "version": "v1", "published": "2021-05-08T15:21:15.000Z", "updated": "2021-05-08T15:21:15.000Z", "title": "Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via $T1$ theorem", "authors": [ "Zhiyong Wang", "Pengtao Li", "Chao Zhang" ], "comment": "32 pages", "categories": [ "math.CA" ], "abstract": "Let $\\mathcal{L}=-\\Delta+V$ be a Schr\\\"{o}dinger operator, where the nonnegative potential $V$ belongs to the reverse H\\\"{o}lder class $B_{q}$. By the aid of the subordinative formula, we estimate the regularities of the fractional heat semigroup, $\\{e^{-t\\mathcal{L}^{\\alpha}}\\}_{t>0},$ associated with $\\mathcal{L}$. As an application, we obtain the $BMO^{\\gamma}_{\\mathcal{L}}$-boundedness of the maximal function, and the Littlewood-Paley $g$-functions associated with $\\mathcal{L}$ via $T1$ theorem, respectively.", "revisions": [ { "version": "v1", "updated": "2021-05-08T15:21:15.000Z" } ], "analyses": { "subjects": [ "42B20", "42B30", "35J10" ], "keywords": [ "campanato type spaces", "schrödinger operators", "fractional semigroups", "boundedness", "fractional heat semigroup" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }