{ "id": "2105.03013", "version": "v1", "published": "2021-05-07T00:19:50.000Z", "updated": "2021-05-07T00:19:50.000Z", "title": "A Sobolev space theory for the Stochastic Partial Differential Equations with space-time non-local operators", "authors": [ "Kyeong-Hun Kim", "Daehan Park", "Junhee Ryu" ], "comment": "49 pages", "categories": [ "math.PR" ], "abstract": "We deal with the Sobolev space theory for the stochastic partial differential equation (SPDE) driven by Wiener processes $$ \\partial_{t}^{\\alpha}u=\\left( \\phi(\\Delta) u +f(u) \\right) + \\partial_t^\\beta \\sum_{k=1}^\\infty \\int_0^t g^k(u)\\,dw_s^k, \\quad t>0, x\\in \\mathbb{R}^d; \\,\\,\\, u(0,\\cdot)=u_0 $$ as well as the SPDE driven by space-time white noise $$ \\partial^{\\alpha}_{t}u=\\phi(\\Delta)u + f(u) + \\partial^{\\beta-1}_{t}h(u) \\dot{W}, \\quad t>0,x\\in \\mathbb{R}^d; \\quad u(0,\\cdot)=u_{0}. $$ Here, $\\alpha\\in (0,1), \\beta\\in (-\\infty, \\alpha+1/2)$, $\\{w_t^k : k=1,2,\\cdots\\}$ is a family of independent one-dimensional Wiener processes, and $\\dot{W}$ is a space-time white noise defined on $[0,\\infty)\\times \\mathbb{R}^d$. The time non-local operator $\\partial_{t}^{\\gamma}$ denotes the Caputo fractional derivative if $\\gamma>0$ and the Riemann-Liouville fractional integral if $\\gamma\\leq0$. The the spatial non-local operator $\\phi(\\Delta)$ is a type of integro-differential operator whose symbol is $-\\phi(|\\xi|^2)$, where $\\phi$ is a Bernstein function satisfying \\begin{equation*} \\kappa_0\\left(\\frac{R}{r}\\right)^{\\delta_{0}} \\leq \\frac{\\phi(R)}{\\phi(r)}, \\qquad \\forall\\,\\, 00$ and $\\delta_0\\in (0,1]$. We prove the uniqueness and existence results in Sobolev spaces, and obtain the maximal regularity results of solutions.", "revisions": [ { "version": "v1", "updated": "2021-05-07T00:19:50.000Z" } ], "analyses": { "subjects": [ "60H15", "35R60", "26A33", "47G20" ], "keywords": [ "stochastic partial differential equation", "sobolev space theory", "space-time non-local operators", "space-time white noise", "wiener processes" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }