{ "id": "2105.02016", "version": "v1", "published": "2021-05-05T12:33:38.000Z", "updated": "2021-05-05T12:33:38.000Z", "title": "Algebraic cycles and intersections of 2 quadrics", "authors": [ "Robert Laterveer" ], "comment": "21 pages, to appear in Mediterranean J. of Math., comments welcome", "categories": [ "math.AG" ], "abstract": "A smooth intersection $Y$ of two quadrics in $\\mathbb{P}^{2g+1}$ has Hodge level 1. We show that such varieties $Y$ have a multiplicative Chow-K\\\"unneth decomposition, in the sense of Shen-Vial. As a consequence, a certain tautological subring of the Chow ring of powers of $Y$ injects into cohomology.", "revisions": [ { "version": "v1", "updated": "2021-05-05T12:33:38.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25", "14C30" ], "keywords": [ "algebraic cycles", "smooth intersection", "hodge level", "cohomology" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }