{ "id": "2105.01967", "version": "v1", "published": "2021-05-05T10:30:01.000Z", "updated": "2021-05-05T10:30:01.000Z", "title": "Symmetries of cross caps", "authors": [ "Atsufumi Honda", "Kosuke Naokawa", "Kentaro Saji", "Masaaki Umehara", "Kotaro Yamada" ], "comment": "9 pages, 2 figures", "categories": [ "math.DG" ], "abstract": "It is well-known that cross caps on surfaces in the Euclidean 3-space can be expressed in Bruce-West's normal form, which is a special local coordinate system centered at the singular point. In this paper, we show a certain kind of uniqueness of such a coordinate system. In particular, the functions associated with this coordinate system produce new invariants on cross cap singular points. Using them, we classify the possible symmetries on cross caps.", "revisions": [ { "version": "v1", "updated": "2021-05-05T10:30:01.000Z" } ], "analyses": { "subjects": [ "57R45", "53A05" ], "keywords": [ "symmetries", "cross cap singular points", "special local coordinate system", "coordinate system produce", "bruce-wests normal form" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }