{ "id": "2105.01805", "version": "v1", "published": "2021-05-05T00:19:55.000Z", "updated": "2021-05-05T00:19:55.000Z", "title": "Newton Polyhedra and Whitney Equisingularity for Isolated Determinantal Singularities", "authors": [ "ThaĆ­s M. Dalbelo", "Luiz Hartmann", "Maicom Varella" ], "categories": [ "math.AG", "math.AT" ], "abstract": "We define the elementary equivalence of matrices, and we prove that if two germs of matrices with polynomial entries are elementary equivalent then they define the same determinantal singularity. Using the elementary equivalence and Newton polyhedra, we compute the Euler obstruction of isolated determinantal singularities and we present a condition which guarantees the Whitney equisingularity of a family of isolated determinantal singularities.", "revisions": [ { "version": "v1", "updated": "2021-05-05T00:19:55.000Z" } ], "analyses": { "subjects": [ "32S30" ], "keywords": [ "determinantal singularity", "isolated determinantal singularities", "whitney equisingularity", "newton polyhedra", "elementary equivalence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }