{ "id": "2105.01143", "version": "v1", "published": "2021-05-03T19:50:35.000Z", "updated": "2021-05-03T19:50:35.000Z", "title": "Traces for factorization homology in dimension 1", "authors": [ "David Ayala", "John Francis" ], "comment": "29 pages", "categories": [ "math.AT", "math.CT", "math.KT", "math.QA" ], "abstract": "We construct a circle-invariant trace from the factorization homology of the circle \\[ {\\sf trace} \\colon \\int^\\alpha_{{\\mathbb S}^1} \\\\underline{\\sf End}(V) \\longrightarrow \\uno \\] associated to a dualizable object $V\\in {\\boldsymbol{\\mathfrak X}}$ in a symmetric monoidal $\\infty$-category. This proves a conjecture of To\\\"en--Vezzosi~\\cite{toen.vezzosi} on existence of circle-invariant traces. Underlying our construction is a calculation of the factorization homology over the circle of the walking adjunction in terms of the paracyclic category of Getzler--Jones~\\cite{getzler.jones}: \\[ \\int_{{\\mathbb S}^1} {\\sf Adj} ~\\simeq~ {\\bDelta_{\\circlearrowleft}}^{\\triangleleft\\!\\triangleright} ~. \\] This calculation exhibits a form of Poincar\\'e duality for 1-dimensional factorization homology.", "revisions": [ { "version": "v1", "updated": "2021-05-03T19:50:35.000Z" } ], "analyses": { "keywords": [ "factorization homology", "circle-invariant trace", "poincare duality", "paracyclic category", "calculation" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }