{ "id": "2105.00099", "version": "v1", "published": "2021-04-30T21:34:49.000Z", "updated": "2021-04-30T21:34:49.000Z", "title": "On the annihilator ideal in the $bt$-algebra of tensor space", "authors": [ "Steen Ryom-Hansen" ], "categories": [ "math.RT" ], "abstract": "We study the representation theory of the braids and ties algebra, or the $bt$-algebra, $ \\cal E$. Using the cellular basis $\\{m_{{\\mathfrak s} {\\mathfrak t}} \\}$ for $ \\cal E$ obtained in previous joint work with J. Espinoza we introduce two kinds of permutation modules $M(\\lambda)$ and $ M(\\Lambda) $ for $\\cal E$. We show that the tensor product module $V^{\\otimes n}$ for $\\cal E$ is a direct sum of $ M(\\lambda)$'s. We introduce the dual cellular basis $\\{n_{{\\mathfrak s} {\\mathfrak t}} \\}$ for $ \\cal E $ and study its action on $ M(\\lambda) $ and $ M(\\Lambda ) $. We show that the annihilator ideal $ \\cal I $ in $ \\cal E $ of $ V^{\\otimes n } $ enjoys a nice compatibility property with respect to $\\{n_{{\\mathfrak s} {\\mathfrak t}} \\}$. We finally study the quotient algebra $ {\\cal E}/{\\cal I} $, showing in particular that it is a simultaneous generalization of H\\\"arterich's 'generalized Temperley-Lieb algebra' and Juyumaya's 'partition Temperley-Lieb algebra'.", "revisions": [ { "version": "v1", "updated": "2021-04-30T21:34:49.000Z" } ], "analyses": { "keywords": [ "annihilator ideal", "tensor space", "juyumayas partition temperley-lieb algebra", "nice compatibility property", "dual cellular basis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }