{ "id": "2104.14612", "version": "v1", "published": "2021-04-29T18:59:26.000Z", "updated": "2021-04-29T18:59:26.000Z", "title": "Browder's Theorem with General Parameter Space", "authors": [ "Eilon Solan", "Omri Nisan Solan" ], "categories": [ "math.GN" ], "abstract": "Browder (1960) proved that for every continuous function $F : X \\times Y \\to Y$, where $X$ is the unit interval and $Y$ is a nonempty, convex, and compact subset of $\\dR^n$, the set of fixed points of $F$, defined by $C_F := \\{ (x,y) \\in X \\times Y \\colon F(x,y)=y\\}$ has a connected component whose projection to the first coordinate is $X$. We extend this result to the case where $X$ is a connected and compact Hausdorff space.", "revisions": [ { "version": "v1", "updated": "2021-04-29T18:59:26.000Z" } ], "analyses": { "subjects": [ "55M20" ], "keywords": [ "general parameter space", "browders theorem", "compact hausdorff space", "first coordinate", "unit interval" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }