{ "id": "2104.12065", "version": "v1", "published": "2021-04-25T05:34:07.000Z", "updated": "2021-04-25T05:34:07.000Z", "title": "Ergodic and strong Feller properties of affine processes", "authors": [ "Shukai Chen", "Zenghu Li" ], "categories": [ "math.PR" ], "abstract": "For general (1+1)-affine Markov processes, we prove the ergodicity and exponential ergodicity in total variation distances. Our methods follow the arguments of ergodic properties for L\\'{e}vy-driven OU-processes and a coupling of CBI-processes constructed by stochastic equations driven by time-space noises. Then the strong Feller property is considered.", "revisions": [ { "version": "v1", "updated": "2021-04-25T05:34:07.000Z" } ], "analyses": { "keywords": [ "strong feller property", "affine processes", "total variation distances", "stochastic equations driven", "markov processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }