{ "id": "2104.11898", "version": "v1", "published": "2021-04-24T07:34:46.000Z", "updated": "2021-04-24T07:34:46.000Z", "title": "Capacity of the range of branching random walks in low dimensions", "authors": [ "Tianyi Bai", "Yueyun Hu" ], "categories": [ "math.PR" ], "abstract": "Consider a branching random walk $(V_u)_{u\\in \\mathcal T^{IGW}}$ in $\\mathbb Z^d$ with the genealogy tree $\\mathcal T^{IGW}$ formed by a sequence of i.i.d. critical Galton-Watson trees. Let $R_n $ be the set of points in $\\mathbb Z^d$ visited by $(V_u)$ when the index $u$ explores the first $n$ subtrees in $\\mathcal T^{IGW}$. Our main result states that for $d\\in \\{3, 4, 5\\}$, the capacity of $R_n$ is almost surely equal to $n^{\\frac{d-2}{2}+o(1)}$ as $n \\to \\infty$.", "revisions": [ { "version": "v1", "updated": "2021-04-24T07:34:46.000Z" } ], "analyses": { "subjects": [ "60J80", "60J65" ], "keywords": [ "branching random walk", "low dimensions", "main result states", "genealogy tree", "critical galton-watson trees" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }