{ "id": "2104.11875", "version": "v1", "published": "2021-04-24T03:40:52.000Z", "updated": "2021-04-24T03:40:52.000Z", "title": "Topological gyrogroups with Frechet-Urysohn property and omega^{omega}-base", "authors": [ "Meng Bao", "Xiaoyuan Zhang", "Xiaoquan Xu" ], "comment": "10 pages", "doi": "10.1007/s41980-021-00576-w", "categories": [ "math.GN" ], "abstract": "The concept of topological gyrogroups is a generalization of a topological group. In this work, ones prove that a topological gyrogroup G is metrizable iff G has an {\\omega}{\\omega}-base and G is Frechet-Urysohn. Moreover, in topological gyrogroups, every (countably, sequentially) compact subset being strictly (strongly) Frechet-Urysohn and having an {\\omega}{\\omega}-base are all weakly three-space properties with H a closed L-subgyrogroup", "revisions": [ { "version": "v1", "updated": "2021-04-24T03:40:52.000Z" } ], "analyses": { "subjects": [ "54A20", "11B05", "26A03", "40A05", "40A30", "40A99" ], "keywords": [ "topological gyrogroup", "frechet-urysohn property", "compact subset", "weakly three-space properties" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }