{ "id": "2104.09253", "version": "v1", "published": "2021-04-19T12:50:54.000Z", "updated": "2021-04-19T12:50:54.000Z", "title": "Mapping class group actions on configuration spaces and the Johnson filtration", "authors": [ "Andrea Bianchi", "Jeremy Miller", "Jennifer C. H. Wilson" ], "comment": "28 pages, 14 figures", "categories": [ "math.GT", "math.AT", "math.GN" ], "abstract": "Let $F_n(\\Sigma_{g,1})$ denote the configuration space of $n$ ordered points on the surface $\\Sigma_{g,1}$ and let $\\Gamma_{g,1}$ denote the mapping class group of $\\Sigma_{g,1}$. We prove that the action of $\\Gamma_{g,1}$ on $H_i(F_n(\\Sigma_{g,1});\\mathbb{Z})$ is trivial when restricted to the $i^{th}$ stage of the Johnson filtration $\\mathcal{J}(i)\\subset \\Gamma_{g,1}$. We give examples showing that $\\mathcal{J}(2)$ acts nontrivially on $H_3(F_3(\\Sigma_{g,1}))$ for $g\\ge 2$, and provide two new conceptual reinterpretations of a certain group introduced by Moriyama.", "revisions": [ { "version": "v1", "updated": "2021-04-19T12:50:54.000Z" } ], "analyses": { "subjects": [ "55R80", "57K20" ], "keywords": [ "mapping class group actions", "configuration space", "johnson filtration", "conceptual reinterpretations", "ordered points" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }