{ "id": "2104.08454", "version": "v1", "published": "2021-04-17T05:22:45.000Z", "updated": "2021-04-17T05:22:45.000Z", "title": "The Convex Hull of Parking Functions of Length $n$", "authors": [ "Aruzhan Amanbayeva", "Danielle Wang" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{P}_n$ be the convex hull in $\\mathbb{R}^n$ of all parking functions of length $n$. Stanley found the number of vertices and the number of facets of $\\mathcal{P}_n$. Building upon these results, we determine the number of faces of arbitrary dimension, the volume, and the number of integer points of $\\mathcal{P}_n$.", "revisions": [ { "version": "v1", "updated": "2021-04-17T05:22:45.000Z" } ], "analyses": { "subjects": [ "05A15", "52B05" ], "keywords": [ "convex hull", "parking functions", "arbitrary dimension", "integer points" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }