{ "id": "2104.06974", "version": "v1", "published": "2021-04-14T16:57:15.000Z", "updated": "2021-04-14T16:57:15.000Z", "title": "On the local constancy of certain mod $p$ Galois representations", "authors": [ "Abhik Ganguli", "Suneel Kumar" ], "categories": [ "math.NT" ], "abstract": "In this article we study local constancy of the mod $p$ reduction of certain $2$-dimensional crystalline representations of $\\mathrm{Gal}\\left(\\bar{\\mathbb{Q}}_p/\\mathbb{Q}_p\\right)$ using the mod $p$ local Langlands correspondence. We prove local constancy in the weight space by giving an explicit lower bound on the local constancy radius centered around weights going up to $(p-1)^{2} +3$ and the slope fixed in $(0, \\ p-1)$ satisfying certain constraints. We establish the lower bound by determining explicitly the mod $p$ reductions at nearby weights and applying a local constancy result of Berger.", "revisions": [ { "version": "v1", "updated": "2021-04-14T16:57:15.000Z" } ], "analyses": { "keywords": [ "galois representations", "study local constancy", "dimensional crystalline representations", "explicit lower bound", "local constancy result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }