{ "id": "2104.04931", "version": "v1", "published": "2021-04-11T06:26:18.000Z", "updated": "2021-04-11T06:26:18.000Z", "title": "Blow-up rate and local uniqueness for fractional Schrödinger equations with nearly critical growth", "authors": [ "Daniele Cassani", "Youjun Wang" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We study quantitative aspects and concentration phenomena for ground states of the following nonlocal Schr\\\"odinger equation $ (-\\Delta)^s u+V(x)u= u^{2_s^*-1-\\varepsilon} \\ \\ \\text{in}\\ \\ \\mathbb{R}^N, $ where $\\varepsilon>0$, $s\\in (0,1)$, $2^*_s:=\\frac{2N}{N-2s}$, $N>4s$. We show that the ground state $u_{\\varepsilon}$ blows up and precisely with the following rate $\\|u_{\\varepsilon}\\|_{L^\\infty(\\mathbb{R}^N)}\\sim \\varepsilon^{-\\frac{N-2s}{4s}}$, as $\\epsilon\\rightarrow 0^+$. We also localize the concentration points and, in the case of radial potentials $V$, we prove local uniqueness of sequences of ground states which exhibit a concentrating behavior.", "revisions": [ { "version": "v1", "updated": "2021-04-11T06:26:18.000Z" } ], "analyses": { "subjects": [ "35A15", "35J60", "35B40" ], "keywords": [ "fractional schrödinger equations", "local uniqueness", "blow-up rate", "critical growth", "ground state" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }