{ "id": "2104.04338", "version": "v1", "published": "2021-04-09T12:51:34.000Z", "updated": "2021-04-09T12:51:34.000Z", "title": "Two proofs of the $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{(k_1,k_2,k_3)}(q,t)$", "authors": [ "Guoce Xin", "Yingrui Zhang" ], "comment": "13 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "We give two proofs of the $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{\\vec{k}}(q,t)$ for $\\vec{k}=(k_1,k_2,k_3)$. One is by MacMahon's partition analysis as we proposed; the other is by a direct bijection.", "revisions": [ { "version": "v1", "updated": "2021-04-09T12:51:34.000Z" } ], "analyses": { "keywords": [ "catalan number", "macmahons partition analysis", "direct bijection" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }