{ "id": "2104.03232", "version": "v1", "published": "2021-04-07T16:31:00.000Z", "updated": "2021-04-07T16:31:00.000Z", "title": "On small fractional parts of polynomial-like functions", "authors": [ "Paolo Minelli" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "In a recent paper, Madritsch and Tichy established Diophantine inequalities for the fractional parts of polynomial-like functions. In particular, for $f(x)=x^k+x^c$ where $k$ is a positive integer and $c>1$ is a non-integer, and any fixed $\\xi\\in [0,1]$ they obtained \\[\\min_{2\\leq p\\leq X} \\Vert \\xi \\lfloor f(p)\\rfloor \\Vert\\ll_{k,c,\\epsilon} X^{-\\rho_1(c,k)+\\epsilon}\\] for $\\rho_1(c,k)>0$ explicitly given. In the present note, we improve upon their results in the case $c>k$ and $c>4$.", "revisions": [ { "version": "v1", "updated": "2021-04-07T16:31:00.000Z" } ], "analyses": { "subjects": [ "11J54", "11L07", "11L20" ], "keywords": [ "small fractional parts", "polynomial-like functions", "tichy established diophantine inequalities", "positive integer", "non-integer" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }