{ "id": "2104.02520", "version": "v1", "published": "2021-04-06T14:53:23.000Z", "updated": "2021-04-06T14:53:23.000Z", "title": "$\\mathbb Q\\setminus\\mathbb Z$ is diophantine over $\\mathbb Q$ with 32 unknowns", "authors": [ "Geng-Rui Zhang", "Zhi-Wei Sun" ], "comment": "13 pages", "categories": [ "math.NT", "math.LO" ], "abstract": "In 2016 J. Koenigsmann refined a celebrated theorem of J. Robinson by proving that $\\mathbb Q\\setminus\\mathbb Z$ is diophantine over $\\mathbb Q$, i.e., there is a polynomial $P(t,x_1,\\ldots,x_{n})\\in\\mathbb Q[t,x_1,\\ldots,x_{n}]$ such that for any rational number $t$ we have $$t\\not\\in\\mathbb Z\\iff \\exists x_1\\cdots\\exists x_{n}[P(t,x_1,\\ldots,x_{n})=0]$$ where variables range over $\\mathbb Q$, equivalently $$t\\in\\mathbb Z\\iff \\forall x_1\\cdots\\forall x_{n}[P(t,x_1,\\ldots,x_{n})\\not=0].$$ In this paper we prove further that we may even take $n=32$ and require deg$\\,P<6\\times10^{11}$, which provides the best record in this direction. Combining this with a result of Sun, we get that there is no algorithm to decide for any $P(x_1,\\ldots,x_{41})\\in\\mathbb Z[x_1,\\ldots,x_{41}]$ whether $$\\forall x_1\\cdots\\forall x_9\\exists y_1\\cdots\\exists y_{32}[P(x_1,\\ldots,x_9,y_1,\\ldots,y_{32})=0].$$", "revisions": [ { "version": "v1", "updated": "2021-04-06T14:53:23.000Z" } ], "analyses": { "subjects": [ "03D35", "11U05", "03D25", "11D99", "11S99" ], "keywords": [ "diophantine", "best record", "variables range", "rational number", "celebrated theorem" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }