{ "id": "2104.02341", "version": "v1", "published": "2021-04-06T07:53:24.000Z", "updated": "2021-04-06T07:53:24.000Z", "title": "Weyl formula for the eigenvalues of the dissipative acoustic operator", "authors": [ "Vesselin Petkov" ], "categories": [ "math.AP", "math.SP" ], "abstract": "We study the wave equation in the exterior of a bounded domain $K$ with dissipative boundary condition $\\partial_{\\nu} u - \\gamma(x) u = 0$ on the boundary $\\Gamma$ and $\\gamma(x) > 0.$ The solutions are described by a contraction semigroup $V(t) = e^{tG}, \\: t \\geq 0.$ The eigenvalues $\\lambda_k$ of $G$ with ${\\rm Re}\\: \\lambda_k < 0$ yield asymptotically disappearing solutions $u(t, x) = e^{\\lambda_k t} f(x)$ having exponentially decreasing global energy. We establish a Weyl formula for these eigenvalues in the case $\\min_{x\\in \\Gamma} \\gamma(x) > 1.$ For strictly convex obstacles $K$ this formula concerns all eigenvalues of $G.$", "revisions": [ { "version": "v1", "updated": "2021-04-06T07:53:24.000Z" } ], "analyses": { "subjects": [ "35P20", "35P25", "47A40", "58J50" ], "keywords": [ "dissipative acoustic operator", "weyl formula", "eigenvalues", "formula concerns", "wave equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }