{ "id": "2104.02148", "version": "v1", "published": "2021-04-05T20:42:44.000Z", "updated": "2021-04-05T20:42:44.000Z", "title": "Pairwise intersecting convex sets and cylinders in $\\R^3$", "authors": [ "Imre Barany" ], "categories": [ "math.CO" ], "abstract": "We prove that given a finite collection of cylinders in $\\R^3$ with the property that any two them intersect, then there is a line intersecting an $\\alpha$ fraction of the cylinders where $\\alpha=\\frac 1{28}$. This is a special case of an interesting conjecture.", "revisions": [ { "version": "v1", "updated": "2021-04-05T20:42:44.000Z" } ], "analyses": { "subjects": [ "52A35" ], "keywords": [ "pairwise intersecting convex sets", "finite collection", "special case", "interesting conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }