{ "id": "2104.01204", "version": "v1", "published": "2021-04-02T19:12:25.000Z", "updated": "2021-04-02T19:12:25.000Z", "title": "Sharp bounds of Hankel determinants of second and third order for inverse functions of certain class of univalent functions", "authors": [ "Milutin Obradović", "Nikola Tuneski" ], "categories": [ "math.CV" ], "abstract": "Let ${\\mathcal A}$ be the class of functions that are analytic in the unit disc ${\\mathbb D}$, normalized such that $f(z)=z+\\sum_{n=2}^\\infty a_nz^n$, and let class ${\\mathcal U}(\\lambda)$, $0<\\lambda\\le1$, consists of functions $f\\in{\\mathcal A}$, such that \\[ \\left |\\left (\\frac{z}{f(z)} \\right )^{2}f'(z)-1\\right | < \\lambda\\quad (z\\in {\\mathbb D}). \\] In this paper we determine the sharp upper bounds for the Hankel determinants of second and third order for the inverse functions of functions from the class ${\\mathcal U}(\\lambda)$.", "revisions": [ { "version": "v1", "updated": "2021-04-02T19:12:25.000Z" } ], "analyses": { "subjects": [ "30C45", "30C55" ], "keywords": [ "hankel determinants", "third order", "inverse functions", "sharp bounds", "univalent functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }