{ "id": "2104.00957", "version": "v1", "published": "2021-04-02T09:46:15.000Z", "updated": "2021-04-02T09:46:15.000Z", "title": "A note on some infinite sums of Hurwitz zeta functions", "authors": [ "R B Paris" ], "comment": "9 pages", "categories": [ "math.NT", "math.CA" ], "abstract": "We consider some closed-form evaluations of certain infinite sums involving the Hurwitz zeta function $\\zeta(s,\\alpha)$ of the form \\[\\sum_{k=1}^\\infty (\\pm 1)^k k^m \\zeta(s,k),\\] where $m$ is a non-negative integer. For the sums with $m=0$ and the argument $k$ in $\\zeta(s,k)$ replaced by $ka+b$, where $a$ and $b$ are positive parameters, we also obtain a transformation formula suitable for computation in the limit $a\\to0$.", "revisions": [ { "version": "v1", "updated": "2021-04-02T09:46:15.000Z" } ], "analyses": { "subjects": [ "11M35", "33E20" ], "keywords": [ "hurwitz zeta function", "infinite sums", "closed-form evaluations", "positive parameters", "non-negative integer" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }