{ "id": "2104.00212", "version": "v1", "published": "2021-04-01T02:43:48.000Z", "updated": "2021-04-01T02:43:48.000Z", "title": "Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation", "authors": [ "Yutaro Chiyo", "Monica Marras", "Yuya Tanaka", "Tomomi Yokota" ], "categories": [ "math.AP" ], "abstract": "This paper is concerned with the attraction-repulsion chemotaxis system with superlinear logistic degradation, \\begin{align*} \\begin{cases} u_t = \\Delta u - \\chi \\nabla\\cdot(u \\nabla v) + \\xi \\nabla\\cdot (u \\nabla w) + \\lambda u - \\mu u^k, \\quad &x \\in \\Omega,\\ t>0,\\\\[1.05mm] 0= \\Delta v + \\alpha u - \\beta v, \\quad &x \\in \\Omega,\\ t>0,\\\\[1.05mm] 0= \\Delta w + \\gamma u - \\delta w, \\quad &x \\in \\Omega,\\ t>0, \\end{cases} \\end{align*} under homogeneous Neumann boundary conditions, in a ball $\\Omega \\subset \\mathbb{R}^n$ ($n \\ge 3$), with constant parameters $\\lambda \\in \\mathbb{R}$, $k>1$, $\\mu, \\chi, \\xi, \\alpha, \\beta, \\gamma, \\delta>0$. Blow-up phenomena in the system have been well investigated in the case $\\lambda=\\mu=0$, whereas the attraction-repulsion chemotaxis system with logistic degradation has been not studied. Under the condition that $k>1$ is close to $1$, this paper ensures a solution which blows up in $L^\\infty$-norm and $L^\\sigma$-norm with some $\\sigma>1$ for some nonnegative initial data. Moreover, a lower bound of blow-up time is derived.", "revisions": [ { "version": "v1", "updated": "2021-04-01T02:43:48.000Z" } ], "analyses": { "subjects": [ "35B44", "35Q92", "92C17" ], "keywords": [ "parabolic-elliptic-elliptic attraction-repulsion chemotaxis system", "superlinear logistic degradation", "blow-up phenomena", "homogeneous neumann boundary conditions", "paper ensures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }