{ "id": "2103.17024", "version": "v1", "published": "2021-03-31T12:15:37.000Z", "updated": "2021-03-31T12:15:37.000Z", "title": "A Lindström theorem for intuitionistic first-order logic", "authors": [ "Grigory Olkhovikov", "Guillermo Badia", "Reihane Zoghifard" ], "comment": "50 pages, 0 figures", "categories": [ "math.LO" ], "abstract": "We extend the main result of (G. Badia and G. Olkhovikov. A Lindstr\\\"om theorem for intuitionistic propositional logic. Notre Dame Journal of Formal Logic, 61 (1): 11--30 (2020)) to the first-order intuitionistic logic (with and without equality), showing that it is the maximal (with respect to expressive power) abstract logic satisfying a certain form of compactness, the Tarski union property and preservation under asimulations. A similar result is also shown for the intuitionistic logic of constant domains.", "revisions": [ { "version": "v1", "updated": "2021-03-31T12:15:37.000Z" } ], "analyses": { "subjects": [ "03C95", "03B20", "03B55" ], "keywords": [ "intuitionistic first-order logic", "lindström theorem", "tarski union property", "intuitionistic propositional logic", "notre dame journal" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }