{ "id": "2103.16530", "version": "v1", "published": "2021-03-30T17:34:03.000Z", "updated": "2021-03-30T17:34:03.000Z", "title": "Every positive integer is the order of an ordinary abelian variety over ${\\mathbb F}_2$", "authors": [ "Everett W. Howe", "Kiran S. Kedlaya" ], "comment": "5 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We show that for every integer $m > 0$, there is an ordinary abelian variety over ${\\mathbb F}_2$ that has exactly $m$ rational points.", "revisions": [ { "version": "v1", "updated": "2021-03-30T17:34:03.000Z" } ], "analyses": { "subjects": [ "11A67", "11G10", "14G15", "14K15" ], "keywords": [ "ordinary abelian variety", "positive integer", "rational points" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }