{ "id": "2103.16430", "version": "v1", "published": "2021-03-30T15:25:18.000Z", "updated": "2021-03-30T15:25:18.000Z", "title": "Projections of the uniform distribution on the cube -- a large deviation perspective", "authors": [ "Samuel G. G. Johnston", "Zakhar Kabluchko", "Joscha Prochno" ], "comment": "13 pages", "categories": [ "math.PR", "math.FA" ], "abstract": "For $n\\in\\mathbb N$ let $\\Theta^{(n)}$ be a random vector uniformly distributed on the unit sphere $\\mathbb S^{n-1}$, and consider the associated random probability measure $\\mu_{\\Theta^{(n)}}$ given by setting \\[ \\mu_{\\Theta^{(n)}}(A) := \\mathbb{P} \\left[ \\langle U, \\Theta^{(n)} \\rangle \\in A \\right],\\qquad U \\sim \\text{Unif}([-1,1]^n) \\] for Borel subets $A$ of $\\mathbb{R}$. It is known that the sequence of random probability measures $\\mu_{\\Theta^{(n)}}$ converges weakly to the centered Gaussian distribution with variance $1/3$. We prove a large deviation principle for the sequence $\\mu_{\\Theta^{(n)}}$ with speed $n$ and explicit good rate rate function given by $I(\\nu(\\alpha)) := - \\frac{1}{2} \\log ( 1 - ||\\alpha||_2^2)$ whenever $\\nu(\\alpha)$ is the law of a random variable of the form \\begin{align*} \\sqrt{1 - ||\\alpha||_2^2 } \\frac{Z}{\\sqrt 3} + \\sum_{ k = 1}^\\infty \\alpha_k U_k, \\end{align*} where $Z$ is standard Gaussian independent of $U_1,U_2,\\ldots$ which are i.i.d.\\ $\\text{Unif}[-1,1]$, and $\\alpha_1 \\geq \\alpha_2 \\geq \\ldots $ is a non-increasing sequence of non-negative reals with $||\\alpha||_2<1$. We obtain a similar result for projections of the uniform distribution on the discrete cube $\\{-1,+1\\}^n$.", "revisions": [ { "version": "v1", "updated": "2021-03-30T15:25:18.000Z" } ], "analyses": { "subjects": [ "60F10", "46B06", "52A23" ], "keywords": [ "uniform distribution", "large deviation perspective", "projections", "associated random probability measure", "rate rate function" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }