{ "id": "2103.15911", "version": "v1", "published": "2021-03-29T19:40:27.000Z", "updated": "2021-03-29T19:40:27.000Z", "title": "Generalised vectorial $\\infty$-eigenvalue nonlinear problems for $L^\\infty$ functionals", "authors": [ "Nikos Katzourakis" ], "comment": "30 pages", "categories": [ "math.AP" ], "abstract": "Let $\\Omega \\Subset \\mathbb R^n$, $f \\in C^1(\\mathbb R^{N\\times n})$ and $g\\in C^1(\\mathbb R^N)$, where $N,n \\in \\mathbb N$. We study the minimisation problem of finding $u \\in W^{1,\\infty}_0(\\Omega;\\mathbb R^N)$ that satisfies \\[ \\big\\| f(\\mathrm D u) \\big\\|_{L^\\infty(\\Omega)} \\! = \\inf \\Big\\{\\big\\| f(\\mathrm D v) \\big\\|_{L^\\infty(\\Omega)} \\! : \\ v \\! \\in W^{1,\\infty}_0(\\Omega;\\mathbb R^N), \\, \\| g(v) \\|_{L^\\infty(\\Omega)}\\! =1\\Big\\}, \\] under natural assumptions on $f,g$. This includes the $\\infty$-eigenvalue problem as a special case. Herein we prove existence of a minimiser $u_\\infty$ with extra properties, derived as the limit of minimisers of approximating constrained $L^p$ problems as $p\\to \\infty$. A central contribution and novelty of this work is that $u_\\infty$ is shown to solve a divergence PDE with measure coefficients, whose leading term is a divergence counterpart equation of the non-divergence $\\infty$-Laplacian. Our results are new even in the scalar case of the $\\infty$-eigenvalue problem.", "revisions": [ { "version": "v1", "updated": "2021-03-29T19:40:27.000Z" } ], "analyses": { "subjects": [ "35D30", "35D40", "35J47", "35J92", "35J70", "35J99", "35P30" ], "keywords": [ "eigenvalue nonlinear problems", "generalised vectorial", "functionals", "eigenvalue problem", "divergence counterpart equation" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }