{ "id": "2103.15127", "version": "v1", "published": "2021-03-28T13:28:39.000Z", "updated": "2021-03-28T13:28:39.000Z", "title": "A stability result on matchings in 3-uniform hypergraphs", "authors": [ "Mingyang Guo", "Hongliang Lu", "Dingjia Mao" ], "categories": [ "math.CO" ], "abstract": "Let $n,s,k$ be three positive integers such that $1\\leq s\\leq(n-k+1)/k$ and let $[n]=\\{1,\\ldots,n\\}$. Let $H$ be a $k$-graph with vertex set $\\{1,\\ldots,n\\}$, and let $e(H)$ denote the number of edges of $H$. Let $\\nu(H)$ and $\\tau(H)$ denote the size of a largest matching and the size of a minimum vertex cover in $H$, respectively. Define $A^k_i(n,s):=\\{e\\in\\binom{[n]}{k}:|e\\cap[(s+1)i-1]|\\geq i\\}$ for $2\\leq i\\leq k$ and $HM^k_{n,s}:=\\big\\{e\\in\\binom{[n]}{k}:e\\cap[s-1]\\neq\\emptyset\\big\\} \\cup\\big\\{S\\big\\}\\cup \\big\\{e\\in\\binom{[n]}{k}: s\\in e, e\\cap S\\neq \\emptyset\\}$, where $S=\\{s+1,\\ldots,s+k\\}$. Frankl and Kupavskii conjectured that if $\\nu(H)\\leq s$ and $\\tau(H)>s$, then $e(H)\\leq \\max\\{|A^k_2(n,s)|,\\ldots ,|A^k_k(n,s)|,|HM^k_{n,s}|\\}$. In this paper, we prove this conjecture for $k=3$ and sufficiently large $n$.", "revisions": [ { "version": "v1", "updated": "2021-03-28T13:28:39.000Z" } ], "analyses": { "keywords": [ "stability result", "hypergraphs", "minimum vertex cover", "vertex set", "positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }