{ "id": "2103.14924", "version": "v1", "published": "2021-03-27T14:57:29.000Z", "updated": "2021-03-27T14:57:29.000Z", "title": "A Construction of $C^r$ Conforming Finite Element Spaces in Any Dimension", "authors": [ "Jun Hu", "Ting Lin", "Qingyu Wu" ], "categories": [ "math.NA", "cs.NA" ], "abstract": "This paper proposes a construction of local $C^r$ interpolation spaces and $C^r$ conforming finite element spaces with arbitrary $r$ in any dimension. It is shown that if $k \\ge 2^{d}r+1$ the space $\\mathcal P_k$ of polynomials of degree $\\le k$ can be taken as the shape function space of $C^r$ finite element spaces in $d$ dimensions. This is the first work on constructing such $C^r$ conforming finite elements in any dimension in a unified way. It solves a long-standing open problem in finite element methods.", "revisions": [ { "version": "v1", "updated": "2021-03-27T14:57:29.000Z" } ], "analyses": { "keywords": [ "conforming finite element spaces", "construction", "shape function space", "finite element methods", "first work" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }