{ "id": "2103.14487", "version": "v1", "published": "2021-03-26T14:22:52.000Z", "updated": "2021-03-26T14:22:52.000Z", "title": "Sums of Fibonacci numbers that are perfect powers", "authors": [ "Volker Ziegler" ], "categories": [ "math.NT" ], "abstract": "Let us denote by $F_n$ the $n$-th Fibonacci number. In this paper we show that for a fixed integer $y$ there exists at most one integer exponent $a>0$ such that the Diophantine equation $F_n+F_m=y^a$ has a solution $(n,m,a)$ in positive integers satisfying $n>m>0$, unless $y=2,3,4,6$ or $10$.", "revisions": [ { "version": "v1", "updated": "2021-03-26T14:22:52.000Z" } ], "analyses": { "keywords": [ "perfect powers", "th fibonacci number", "integer exponent", "diophantine equation", "fixed integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }