{ "id": "2103.14164", "version": "v1", "published": "2021-03-25T22:39:35.000Z", "updated": "2021-03-25T22:39:35.000Z", "title": "On Donkin's Tilting Module Conjecture I: Lowering the Prime", "authors": [ "Christopher P. Bendel", "Daniel K. Nakano", "Cornelius Pillen", "Paul Sobaje" ], "categories": [ "math.RT", "math.GR" ], "abstract": "In this paper the authors provide a complete answer to Donkin's Tilting Module Conjecture for all rank $2$ semisimple algebraic groups and $\\text{SL}_{4}(k)$ where $k$ is an algebraically closed field of characteristic $p>0$. In the process, new techniques are introduced involving the existence of $(p,r)$-filtrations, Lusztig's character formula, and the $G_{r}$T-radical series for baby Verma modules.", "revisions": [ { "version": "v1", "updated": "2021-03-25T22:39:35.000Z" } ], "analyses": { "subjects": [ "20G05", "20J06" ], "keywords": [ "donkins tilting module conjecture", "baby verma modules", "lusztigs character formula", "semisimple algebraic groups", "complete answer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }