{ "id": "2103.13849", "version": "v1", "published": "2021-03-25T13:59:34.000Z", "updated": "2021-03-25T13:59:34.000Z", "title": "Singularities of spacelike mean curvature one surfaces in de Sitter space", "authors": [ "Atsufumi Honda", "Himemi Sato" ], "comment": "30 pages", "categories": [ "math.DG" ], "abstract": "In this paper, we study the singularities of spacelike constant mean curvature one (CMC 1) surfaces in the de Sitter 3-space. We prove the duality between generalized conelike singular points and 5/2-cuspidal edges on spacelike CMC 1 surfaces. To describe the duality between $A_{k+3}$ singularities and cuspidal $S_k$ singularities, we introduce two invariants, called the $\\alpha$-invariant and $\\sigma$-invariant, of spacelike CMC 1 surfaces at their singular points. Moreover, we give a classification of non-degenerate singular points on spacelike CMC 1 surfaces.", "revisions": [ { "version": "v1", "updated": "2021-03-25T13:59:34.000Z" } ], "analyses": { "subjects": [ "53A10", "57R45", "53A35", "53C42", "53B30" ], "keywords": [ "spacelike mean curvature", "sitter space", "singularities", "spacelike cmc", "spacelike constant mean curvature" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }