{ "id": "2103.13594", "version": "v1", "published": "2021-03-25T03:57:57.000Z", "updated": "2021-03-25T03:57:57.000Z", "title": "Parabolic induction and the Harish-Chandra D-module", "authors": [ "Victor Ginzburg" ], "comment": "12pp", "categories": [ "math.RT", "math.AG" ], "abstract": "Let G be a reductive group and L a Levi subgroup. Parabolic induction and restriction are a pair of adjoint functors between Ad-equivariant derived categories of either constructible sheaves or (not necessarily holonomic) D-modules on G and L, respectively. Bezrukavnikov and Yom Din proved, generalizing a classic result of Lusztig, that these functors are exact. In this paper, we consider a special case where L=T is a maximal torus. We give explicit formulas for parabolic induction and restriction in terms of the Harish-Chandra module D-module on G x T. We show that this module is flat over D(T), which easily implies that parabolic induction and restriction are exact functors between the corresponding abelian categories of D-modules.", "revisions": [ { "version": "v1", "updated": "2021-03-25T03:57:57.000Z" } ], "analyses": { "keywords": [ "parabolic induction", "harish-chandra d-module", "restriction", "harish-chandra module d-module", "levi subgroup" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }