{ "id": "2103.13542", "version": "v1", "published": "2021-03-25T01:08:48.000Z", "updated": "2021-03-25T01:08:48.000Z", "title": "Moments of the Hurwitz zeta Function on the Critical Line", "authors": [ "Anurag Sahay" ], "comment": "comments/suggestions welcome!", "categories": [ "math.NT" ], "abstract": "We study the moments $M_k(T;\\alpha) = \\int_T^{2T} |\\zeta(s,\\alpha)|^{2k}\\,dt$ of the Hurwitz zeta function $\\zeta(s,\\alpha)$ on the critical line, $s = 1/2 + it$. We conjecture, in analogy with the Riemann zeta function, that $M_k(T;\\alpha) \\sim c_k(\\alpha) T (\\log T)^{k^2}$. In the case of $\\alpha\\in\\mathbb{Q}$, we use heuristics from analytic number theory and random matrix theory to compute $c_k(\\alpha)$. In the process, we investigate moments of products of Dirichlet $L$-functions on the critical line. We provide several pieces of evidence for our conjectures, in particular by proving some of them for the cases $k = 1,2$ and $\\alpha \\in \\mathbb{Q}$.", "revisions": [ { "version": "v1", "updated": "2021-03-25T01:08:48.000Z" } ], "analyses": { "subjects": [ "11M35" ], "keywords": [ "hurwitz zeta function", "critical line", "riemann zeta function", "analytic number theory", "random matrix theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }