{ "id": "2103.13533", "version": "v1", "published": "2021-03-25T00:09:09.000Z", "updated": "2021-03-25T00:09:09.000Z", "title": "Symmetry-Preserving Paths in Integrated Gradients", "authors": [ "Miguel Lerma", "Mirtha Lucas" ], "comment": "7 pages, 1 figure", "categories": [ "cs.LG", "cs.AI" ], "abstract": "We provide rigorous proofs that the Integrated Gradients (IG) attribution method for deep networks satisfies completeness and symmetry-preserving properties. We also study the uniqueness of IG as a path method preserving symmetry.", "revisions": [ { "version": "v1", "updated": "2021-03-25T00:09:09.000Z" } ], "analyses": { "subjects": [ "68T07", "I.2.m" ], "keywords": [ "integrated gradients", "symmetry-preserving paths", "deep networks satisfies completeness", "path method preserving symmetry", "attribution method" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }