{ "id": "2103.11449", "version": "v1", "published": "2021-03-21T17:53:00.000Z", "updated": "2021-03-21T17:53:00.000Z", "title": "Generalized Grassmann algebras and applications to stochastic processes", "authors": [ "Daniel Alpay", "Paula Cerejeiras", "Uwe Kähler" ], "categories": [ "math.FA", "math-ph", "math.MP", "math.PR" ], "abstract": "In this paper we present the groundwork for an It\\^o/Malliavin stochastic calculus and Hida's white noise analysis in the context of a supersymmentry with Z3-graded algebras. To this end we establish a ternary Fock space and the corresponding strong algebra of stochastic distributions and present its application in the study of stochastic processes in this context.", "revisions": [ { "version": "v1", "updated": "2021-03-21T17:53:00.000Z" } ], "analyses": { "subjects": [ "30G35", "60H45", "60G22", "15A75" ], "keywords": [ "generalized grassmann algebras", "stochastic processes", "application", "hidas white noise analysis", "ternary fock space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }