{ "id": "2103.11418", "version": "v1", "published": "2021-03-21T15:12:29.000Z", "updated": "2021-03-21T15:12:29.000Z", "title": "On the Mattila-Sjölin distance theorem for product sets", "authors": [ "Doowon Koh", "Thang Pham", "Chun-Yen Shen" ], "comment": "8 pages", "categories": [ "math.CA", "math.CO" ], "abstract": "Let $A$ be a compact set in $\\mathbb{R}$, and $E=A^d\\subset \\mathbb{R}^d$. We know from the Mattila-Sj\\\"olin's theorem if $\\dim_H(A)>\\frac{d+1}{2d}$, then the distance set $\\Delta(E)$ has non-empty interior. In this paper, we show that the threshold $\\frac{d+1}{2d}$ can be improved whenever $d\\ge 5$.", "revisions": [ { "version": "v1", "updated": "2021-03-21T15:12:29.000Z" } ], "analyses": { "keywords": [ "mattila-sjölin distance theorem", "product sets", "compact set", "distance set" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }