{ "id": "2103.11117", "version": "v1", "published": "2021-03-20T07:02:50.000Z", "updated": "2021-03-20T07:02:50.000Z", "title": "Non-trivial $t$-intersecting families for the distance-regular graphs of bilinear forms", "authors": [ "Mengyu Cao", "Benjian Lv", "Kaishun Wang" ], "comment": "25 pages", "categories": [ "math.CO" ], "abstract": "Let $V$ be an $(n+\\ell)$-dimensional vector space over a finite field, and $W$ a fixed $\\ell$-dimensional subspace of $V$. Write ${V\\brack n,0}$ to be the set of all $n$-dimensional subspaces $U$ of $V$ satisfying $\\dim(U\\cap W)=0$. A family $\\mathcal{F}\\subseteq{V\\brack n,0}$ is $t$-intersecting if $\\dim(A\\cap B)\\geq t$ for all $A,B\\in\\mathcal{F}$. A $t$-intersecting family $\\mathcal{F}\\subseteq{V\\brack n,0}$ is called non-trivial if $\\dim(\\cap_{F\\in\\mathcal{F}}F)