{ "id": "2103.09994", "version": "v1", "published": "2021-03-18T03:00:59.000Z", "updated": "2021-03-18T03:00:59.000Z", "title": "A Tits alternative for rational functions", "authors": [ "Jason P. Bell", "Keping Huang", "Wayne Peng", "Thomas J. Tucker" ], "comment": "16 pages", "categories": [ "math.NT", "math.AG", "math.GR" ], "abstract": "We prove an analog of the Tits alternative for rational functions. In particular, we show that if $S$ is a finitely generated semigroup of rational functions over the complex numbers, then either $S$ has polynomially bounded growth or $S$ contains a nonabelian free semigroup. We also show that if f and g are polarizable maps over any field that do not have the same set of preperiodic points, then the semigroup generated by f and g contains a nonabelian free semigroup.", "revisions": [ { "version": "v1", "updated": "2021-03-18T03:00:59.000Z" } ], "analyses": { "subjects": [ "20M05", "14H37", "20D15" ], "keywords": [ "rational functions", "tits alternative", "nonabelian free semigroup", "complex numbers", "preperiodic points" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }